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LETTER TO THE EDITOR 
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Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester 
M13 9PL. UK 

Received 3 November 1988 

Abstract. Dilute ferromagnetic spin systems are considered in the Griffiths phase below 
the percolation threshold. It is shown that, for relaxational dynamics, the spin auto- 
correlation functions are bounded both above and below by functions of the form 
exp[-A(ln t ) d i ( d - l ) ]  (Ising systems) and exp(-Bt”*) (Heisenberg systems), establishing 
these as the correct asymptotic forms. 

A number of recent papers [l-61 have dealt with the dynamics of random magnetic 
systems in the ‘Griffiths phase’, which refers to the temperature regime between the 
transition temperature for magnetic long-range order in the random system and the 
highest possible transition temperature allowed in principle by a rare statistical fluctu- 
ation of the disorder over the whole system. The latter temperature is called the 
‘Griffiths temperature’ TG. Thus for a ferromagnet with site or bond dilution, TG is 
the critical temperature of the undiluted system; for a ferromagnet with a bounded 
distribution of exchange interactions, TG is the critical temperature obtained when all 
bonds take the maximum value. For a ferromagnet with an unbounded distribution 
of exchange interactions, the Griffiths phase extends to infinite temperature. 

For a random ferromagnet, the results [ 1,4,5] 

C(t)-exp[ -A(ln t)d/(d-’)] king 

C (  t )  - exp( - ~ t ’ / * )  Heisenberg 

have been obtained for the asymptotic behaviour of the spin autocorrelation functions 
of Ising and classical Heisenberg spin systems in the Griffiths phase. In (1) and (2), 
d is the spatial dimension, and the amplitudes A and B depend on the system parameters 
(temperature, concentration of missing sites or bonds, etc.). The physics behind (1) 
and (2) concerns the dominance, as t+m, of large regions in which, due to rare 
statistical fluctuations in the disorder, the exchange interactions have values characteris- 
tic of an ordered phase at the given temperature. Because these regions are finite they 
do relax, but only slowly due to their large size. 

While the arguments for (1) and (2) are physically appealing, these results have 
been convincingly derived only as lower bounds on C(t), and then only in the Ising 
case. It would be gratifying if the forms (1) and (2) could be shown to provide both 
upper and lower bounds, thereby establishing them beyond doubt as the correct 
asymptotic forms. In this letter we demonstrate that upper and lower bounds of the 
forms (1) and (2) can be derived for dilute Ising and Heisenberg ferromagnets in at 
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least part of the Griffiths phase, namely below the percolation threshold, where the 
systems are sufficiently dilute that they consist of finite clusters only. 

The basic idea is very simple. The lower bound is derived by considering only 
those clusters which are compact. These are fewer in number than typical clusters, 
but relax more slowly, in a calculable manner. The upper bound is obtained by 
including all clusters, but replacing their lifetimes by those of compact clusters of the 
same volume. 

The first step is to write the average spin autocorrelation function, C ( t )  = 
[ (S , ( t )  S,(O)>], where (. . .> and [. . .] indicate thermal and disorder averages respec- 
tively, as a sum of contributions from different clusters. This is possible because 
different clusters relax independently. Let n, be the probability that a randomly chosen 
site belongs to a cluster of type i ,  where i specifies both the size of the cluster, and its 
shape relative to the chosen site. (Alternatively, n, can be thought of as the number of 
clusters per site of type i . )  If C,(t)  is the autocorrelation function of the chosen site, 
then 

C ( t )  =c n,C,(t). (3 1 
I 

The desired bounds will be obtained by writing inequalities for n, and C,(t) .  We 
consider lower and upper bounds in turn. 
(i) Lower bounds. For a ferromagnetic system, (3) is a sum of positive terms, so C ( t )  
is bounded below by any subset of these terms. Since we require only the asymptotic 
form of C( t ) ,  we keep things simple by considering compact clusters of a given shape, 
namely hypercubes. Then the index i specifies only the size L (i.e. linear dimension) 
of the cluster. To be specific we will consider site dilution, although bond dilution 
requires only trivial modifications. Since the cluster volume is Ld, the probability nL 
for a given site to belong to such a cluster is 

L" - 

In (4) a factor (1 - p ) * ,  where A S  Ld-' is the surface area of the cluster, has been 
omitted since it leads to a term of order Ld-' term in the exponent, which is negligible 
compared with the O ( L d )  term for large L. For similar reasons, a prefactor Ld, 
corresponding to the number of ways of positioning the site in the cluster, has been 
omitted. It remains to compute the autocorrelation function CL( t )  for the spins of 
such a cluster. To obtain the asymptotic (long-time) behaviour we work at timescales 
sufficiently long that only a single mode remains unrelaxed, namely that which corre- 
sponds to a global reorientation of the cluster magnetisation. This timescale, the 
'ergodic time' for the cluster, will be different for Ising and Heisenberg systems. 
Ising spins. The longest relaxation time for a hypercubic cluster is associated with the 
creation of a domain wall in the cluster, dividing regions of opposing magnetisation. 
The free energy of such a wall is, for large L, F,., = uLd-',  where v is the bulk surface 
tension at the given temperature. The Arrhenius formula gives the cluster ergodic time 
as 

(4) nL = p  - exp[-Ld in( 1 / p ) ] .  

= T~ exp(uLd-'/ T). ( 5 )  
The precise form (in particular, any L dependence) of the pre-exponential factor ro 
is unimportant, since the asymptotic form of C( t )  will be dominated by the exponential 
term in 7'. The asymptotic time dependence of the autocorrelation function for the 
cluster sites is 

cL( t )  = mz exp( - t /  T ~ )  ( 6 )  
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where m is the magnetisation per site in the bulk, provided L is large compared with 
the bulk correlation length 6. The full correlation function C ( t )  satisfies 

c(t)>C nLCL- r+m m2Cexp[-Ld L ln(l /p)-t /rL].  (7) 
L 

Inserting (5) and evaluating the sum on L by steepest descents for large t (i.e. selecting 
the single largest term) yields 

C( 1 )  m2 exp[ - A,,,(ln t )d / (d- l ) ]  (8) 

A,,, = ( T / ~ T ) ~ / ‘ ~ - ’ ’  ln(l/p). 

where 

(9) 

Heisenberg spins. We consider purely relaxational dynamics only (‘model A’ of Hohen- 
berg and Halperin [7]). Then relaxation of the cluster magnetisation is by ‘diffusion 
of the order parameter’. For a compact cluster of definite shape (a hypercube say), 
the longest relaxation time (ergodic time) is proportional [4] to the number of sites Ld : 

(10) 

where the precise form of ro is again unimportant. Substituting this form in (7), and 
again performing the L sum by steepest descents, yields 

d rL = roL 

C ( t )  m2 exp( - B,,, t” ’ )  (11) 

Bmax = 2[ ln( l /~) /701~’~* (12) 

where 

We now derive upper bounds for C ( t ) .  These will have the same form as (8) and 
(1 l ) ,  but with Amin and Bmin replacing A,,, and B,,, . 
(ii) Upper bounds. To obtain upper bounds on C ( t ) ,  we group clusters according to 
the number of sites s which they contain, i.e. their ‘volume’. The total number of s 
clusters per site, for p < p c  and s large, is given by [8] 

n s  = b ( s )  exp( - 4 p ) s )  (13) 

where a(p)(<ln( l /p))  vanishes at pc .  The pre-exponential factor b ( s )  is of no interest 
here-the exponential dependence dominates for large s. The longest relaxation time 
of an s cluster depends, in general, on its shape as well as its volume. For p < pc  most 
clusters are ramified, with correspondingly short relaxation times. The relaxation time 
of a general cluster is, however, bounded above by that of a compact (e.g. hypercubic?) 
cluster of the same volume: 

rs s ro exp( c ~ s ( ~ - l ) / ~ /  T )  Ising (14) 

rs C ros Heisenberg. (15) 

Inserting (13)-(15), in (3) (with i replaced by s), and evaluating the sums on s by the 

t Strictly, spherical clusters have the longest relaxation time, but this does not change our results in any 
important way. We use hypercubic clusters merely to avoid cluttering the text with geometrical factors 
associated with the volume and surface area of a hypersphere! 
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method of steepest descents for large t ,  yields 

C ( t )  s m2 exp[-Ami& t )d’(d-l)]  Ising (16) 

C ( t ) s  m2exp(-Bmi, t 1 I 2 )  Heisenberg (17)  

where 

In the above derivations of upper and lower bounds on C ( t )  we have been a little 
cavalier with the inequality signs in as much as we have systematically ignored 
(subdominant) pre-exponential factors: the stated inequalities really apply only at the 
level of the exponential factors. In order to make precise statements, therefore, we 
rewrite the inequalities for C ( t )  in the form 

lim[-ln r-fm C(t)/(ln t )d’(d-l)]  = A  Ising spins (20) 

lim 1-w (-In C ( t ) / t ’ ” )  = B Heisenberg spins (21) 

where 

Amin S A S  A,,, (22) 

Bmin S B S B,,, . (23) 
Equations (20)-(23) substantiate the asymptotic forms ( 1 )  and (2) for dilute magnets 

with relaxational dynamics, at least in that part of the Griffiths phase which lies below 
the percolation threshold. Since A,,, and Bmin vanish at p c ,  the upper bounds become 
useless for p > pc, although the lower bounds still hold. Simple variational arguments 
[4-61 suggest, however, that the forms ( 1 )  and (2) hold throughout the Griffiths phase 
and for more general kinds of disorder than simple dilution. 

The question of greatest practical importance concerns the time domain over which 
the asymptotic behaviour can be expected to be observed. If the asymptotic forms ( 1 )  
and (2) only hold when C ( t )  is very small, then the results are somewhat academic. 
The results of Jain [9] for the d = 2 Ising ferromagnet, and those of Ogielski [lo] for 
the d = 3 Ising spin glass, are not particularly encouraging. In both cases the data are 
well fitted by stretched exponential forms, C (  t )  - exp[ - ( t / ~ ) @ ] ,  with a temperature- 
dependent ‘stretched exponent’ p. Jain’s data, however, are at least consistent with 
( 1 )  for C( t )  < By contrast, data obtained from recent Monte Carlo studies [ 1 1 1  
of bond-dilute d = 3  Heisenberg ferromagnets are well described by (2) over a wide 
range of time, and the temperature-independent stretched exponent f is verified. 
Supplementing (2) by a power-law prefactor, with a temperature-independent power, 
fits the data well over most of the decay of C ( t ) ,  failing only at very short times. In 
these fits, only B and the overall prefactor depend on temperature. It is not yet clear 
why (2) fits the Heisenberg data so much better than ( 1 )  fits the Ising data. It may be 
that much better fits are obtained if (1) is modified so that In t is replaced by ln(t/T), 
with T a temperature-dependent timescale. Such a form does in fact emerge naturally 
in the upper and lower bounds derived above (see also [4]), with T - T ~ (  T / u ) ~ ’ ( ~ - ’ ) .  
This modification is irrelevant asymptotically, when In t >>In T, and was therefore 
omitted from ( l ) ,  (8) and (16). However, it may be important to retain it when analysing 
Monte Carlo (or experimental) data. 
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